Deep.Net


ITrainable<'Smpl, 'T>

Namespace: Models
Parent Module: Train

Interface for a trainable model.

Instance members

Instance memberDescription
InitModel(seed)
Signature: seed:int -> unit
Modifiers: abstract

Initializes the model using the given random seed.

InitOptState()
Signature: unit -> unit
Modifiers: abstract

Initialize optimizer state.

LoadModel(hdf prefix)
Signature: hdf:HDF5 -> prefix:string -> unit
Modifiers: abstract

Load model parameters from specified file.

LoadOptState(hdf prefix)
Signature: hdf:HDF5 -> prefix:string -> unit
Modifiers: abstract

Load optimizer state from specified file.

Losses(sample)
Signature: sample:'Smpl -> float list
Modifiers: abstract

Loss of given sample.

ModelParameters()
Signature: unit -> Tensor<'T>
Modifiers: abstract

Model parameter values (i.e. weights).

CompiledName: set_ModelParameters

ModelParameters()
Signature: unit -> unit
Modifiers: abstract

Model parameter values (i.e. weights).

CompiledName: get_ModelParameters

Optimize(learningRate sample)
Signature: learningRate:float -> sample:'Smpl -> Lazy<float list>
Modifiers: abstract

Perform an optimization step with the given learning rate and sample and return the loss.

PrintInfo()
Signature: unit -> unit
Modifiers: abstract

Prints information about the model.

ResetModelState()
Signature: unit -> unit
Modifiers: abstract

Resets the internal model state. (for example the latent state of an RNN)

SaveModel(hdf prefix)
Signature: hdf:HDF5 -> prefix:string -> unit
Modifiers: abstract

Save model parameters to specified file.

SaveOptState(hdf prefix)
Signature: hdf:HDF5 -> prefix:string -> unit
Modifiers: abstract

Save optimizer state to specified file.

Fork me on GitHub