Deep.Net
Datasets Namespace
Type | Description |
CifarRawT | Raw MNIST dataset |
Dataset<'S> | A dataset of a record type 'S containing ArrayNDT<_> data variables. The first dimension of each record field is the sample. All record fields must contain the same number of samples. The default constructor expects a list of ArrayNDTs corresponding to the fields in 'S. To construct a Dataset<_> from a sequence of samples use the Dataset<_>.FromSamples method. |
InputTargetSampleT | A data sample consisting of an input and target array. |
MnistRawT | Raw MNIST dataset |
TrnValTst<'S> | A training/validation/test partitioning of a dataset. |
Module | Description |
Cifar10 | Module containing functions to load the Cifar 10 dataset from the binary version. The dataset can be found at https://www.cs.toronto.edu/~kriz/cifar.html |
CsvLoader | |
Dataset | Dataset functions. |
Mnist | Module containing functions to load the MNIST dataset. |
Normalization | Dataset normalization functions. |
NormalizationTypes | Dataset normalization types. |
TrnValTst |
Models Namespace
Module | Description |
Accuracy | Accuracy, defined by probability of correct classification. |
ActivationFunc | Activation function expressions. |
ActivationFuncTypes | |
Config | Configuration loader. |
GaussianProcess | |
Json | JSON serialization. |
LinearRegression | |
LossLayer | A layer that calculates the loss between predictions and targets using a difference metric. |
MLP | A neural network (multi-layer perceptron) of multiple NeuralLayers and one LossLayer on top. |
MSE | Mean over samples of squared error. |
NeuralLayer | A layer of neurons (perceptrons). |
NormalDistribution | Expressions concernred with Normal Distriutions |
Pickle | Binary serialization. |
RMSE | Root of mean over samples of squared error. |
Regularization | Regularization expressions. |
SSE | Sum squared error. |
Train | Generic training module. |
TrainingLog | Training history module. |
TrainingTypes | |
Util |
Optimizers Namespace
Type | Description |
Adam<'T> | |
GradientDescent<'T> | |
RMSprop<'T> |
Module | Description |
Adam | |
GradientDescent | |
OptimizerTypes | |
RMSprop |
SymTensor Namespace
Type | Description |
ExprInfoT | |
MultiChannelOpUsageT | |
UExprInfoT | Information about a unified expression. |
VarRecord<'RVal, 'RExpr> | Maps a value record (containing scalars or ArrayNDTs) to a expression record (containing ExprTs). |
Module | Description |
BaseRangesSpec | |
CompileEnv | Function compilation parameters |
ConstSpec | scalar constant value |
ConstSpecTypes | scalar constant value types |
Debug | |
Deriv | derivative calculation |
DerivCheck | |
DerivTypes | |
DiagnosticsVisualizer | |
Dump | |
ElemExpr | element expression |
ElemExprDeriv | |
ElemExprHostEval | |
ElemExprTypes | |
EnvTypes | |
EvalEnv | |
Expr | expression module |
ExprTypes | |
Frac | |
Func | Generates F# function from expressions. |
FuncTypes | |
Hold | functions for working with held op |
HostEval | |
HostEvalTypes | |
Interpolator | linear interpolator functions |
InterpolatorTypes | linear interpolator types |
LoopEval | functions for loop evaluation |
ModelContextTypes | |
Optimizer | |
RangeSpecTypes | |
ShapeSpec | shape specification of a tensor |
ShapeSpecTypes | |
SimpleRangeSpec | |
SimpleRangesSpec | |
SizeMultinomTypes | |
SizeProduct | |
SizeProductTypes | |
SizeSpec | |
SizeSpecTypes | |
SizeSymbol | |
SizeSymbolTypes | |
SymSizeEnv | |
SymSizeEnvTypes | |
Trace | |
TypeName | assembly qualified name of a .NET type |
TypeNameTypes | TypeName types |
UElemExpr | unified element expression |
UExpr | Functions for dealing with unified expressions. |
UExprRngsSpec | |
UExprTypes | |
Utils | |
VarEnv | Variable value collection. |
VarEnvTypes | |
VarSpec | variable specification |
VarSpecTypes | variable specification types |
SymTensor.Compiler Namespace
Module | Description |
ArrayNDManikin | |
ArrayNDManikinTypes | |
ExecUnit | |
ExecUnitsTypes |
SymTensor.Compiler.Cuda Namespace
Type | Description |
VarEnvReg | Locks and registers all variables in a VarEnv for use with CUDA. |
Module | Description |
ArgTemplates | |
Compile | |
CudaCmdTypes | |
CudaCompileEnv | methods for manipulating the CUDA compile environment |
CudaElemExpr | |
CudaEval | |
CudaEvalTypes | |
CudaExecEnv | |
CudaExecUnit | |
CudaExecUnitTypes | |
CudaExprWorkspaceTypes | |
CudaRecipe | |
CudaRecipeTypes | |
CudaStreamSeq | |
Debug | |
Native | native methods |
NativeFunctionDelegates | |
PassArrayByVal | |
TmplInstCache | |
Types |
Tensor Namespace
Type | Description |
BaseTensorDevice | |
BlockTensor<'T> | block tensor specification |
CannotBroadcast | cannot broadcast to same shape |
CannotCudaRegisterMemory | cannot register host memory with CUDA, maybe because it is not properly aligned |
CudaError | generic CUDA error |
CudaRegMemHnd | CUDA registered memory for fast data transfer. Dispose to unregister memory with CUDA. |
DataTypeMismatch | operation requires tensors of same data types, but specified tensor had different data types |
HDF5 | A HDF5 file. |
HDF5Mode | |
ITensor | Type-neutral interface to Tensor<'T> of any type 'T. |
ITensorBackend<'T> | |
ITensorCudaBackend | type-neutral interface to CUDA backend for tensors |
ITensorCudaStorage | type neutral interface to a CudaStorageT |
ITensorDevice | |
ITensorHostStorage | type-neutral interface to TensorHostStorage<'T> |
ITensorStorage | |
ITensorStorage<'T> | |
ImpossibleWithoutCopy | the layout of this tensor makes this operation impossible without copying it |
IndexOutOfRange | specified tensor index is out of range |
InvalidTensorLayout | invalid tensor layout specification |
InvalidTensorRng | invalid tensor range specification |
MatrixPart | part of a matrix |
NPZFile | A Numpy .npz data file. |
OutOfCudaMemory | out of CUDA memory |
PinnedMemory | pinned .NET managed memory (wraps a GCHandle) |
SeqTooShort | sequence too short to fill tensor |
ShapeMismatch | operation requires tensors of same shape, but specified tensor had different shapes |
SingularMatrixError | singular matrix encountered |
StorageMismatch | operation requires tensors of same storage, but specified tensors had different storages |
StrideMismatch | operation requires tensor with a specific stride configuration, which is not fulfilled |
Tensor<'T> | An N-dimensional array with elements of type 'T. |
Tensor | An N-dimensional array with elements of type 'T. |
TensorCudaBackend<'T> | CUDA backend for tensors. |
TensorCudaDevice | Creates Tensors on a CUDA device. |
TensorCudaStorage<'T> | Tensor storage on a CUDA device. |
TensorHostBackend<'T> | Backend for host tensors. |
TensorHostDevice | Factory for host tensors. |
TensorHostStorage<'T> | Storage (using a .NET array) for host tensors. |
TensorOrder | memory ordering of tensor |
UnsupportedTransfer | transfer between used storages is not possible |
Module | Description |
CudaRegMem | Methods for locking a TensorHostStorage into memory and registering the memory with CUDA for fast data transfers with GPU device. |
CudaTensor | Tensor stored on CUDA device. |
Decomposition | Matrix decomposition functions. |
HostTensor | Host tensor functions. |
NPYFile | methods for accessing Numpy .npy data files. |
Operators | Useful core operators. |
RandomExtensions | |
Tensor | An N-dimensional array with elements of type 'T. |
TensorLayout | |
TensorLayoutTypes | |
TensorRng | Range specification functions. |
Tensor.Cuda.Backend Namespace
Type | Description |
Cfg | CUDA backend configuration |
NativeIdxTensors | C++ NativeIdx |
NativeIdxTensorsInfo | C++ NativeIdx template info |
NativeTensor | C++ tensor marshaling |
Module | Description |
Cfg | CUDA backend configuration |
Tensor.Utils Namespace
Type | Description |
DiskBinaryMap | a filesystem backed map for binary keys and values |
Module | Description |
Array2D | |
Cuda | Cuda support types functions |
List | |
Map | |
Permutation | Permutation utilities |
Seq | |
String | |
Util | Utility functions |
UtilTypes |
global Namespace
Module | Description |
DiskMap |