Deep.Net


Deep.Net

Datasets Namespace

TypeDescription
CifarRawT

Raw MNIST dataset

Dataset<'S>

A dataset of a record type 'S containing ArrayNDT<_> data variables. The first dimension of each record field is the sample. All record fields must contain the same number of samples. The default constructor expects a list of ArrayNDTs corresponding to the fields in 'S. To construct a Dataset<_> from a sequence of samples use the Dataset<_>.FromSamples method.

InputTargetSampleT

A data sample consisting of an input and target array.

MnistRawT

Raw MNIST dataset

TrnValTst<'S>

A training/validation/test partitioning of a dataset.

ModuleDescription
Cifar10

Module containing functions to load the Cifar 10 dataset from the binary version. The dataset can be found at https://www.cs.toronto.edu/~kriz/cifar.html

CsvLoader
Dataset

Dataset functions.

Mnist

Module containing functions to load the MNIST dataset.

Normalization

Dataset normalization functions.

NormalizationTypes

Dataset normalization types.

TrnValTst

Models Namespace

ModuleDescription
Accuracy

Accuracy, defined by probability of correct classification.

ActivationFunc

Activation function expressions.

ActivationFuncTypes
Config

Configuration loader.

GaussianProcess
Json

JSON serialization.

LinearRegression
LossLayer

A layer that calculates the loss between predictions and targets using a difference metric.

MLP

A neural network (multi-layer perceptron) of multiple NeuralLayers and one LossLayer on top.

MSE

Mean over samples of squared error.

NeuralLayer

A layer of neurons (perceptrons).

NormalDistribution

Expressions concernred with Normal Distriutions

Pickle

Binary serialization.

RMSE

Root of mean over samples of squared error.

Regularization

Regularization expressions.

SSE

Sum squared error.

Train

Generic training module.

TrainingLog

Training history module.

TrainingTypes
Util

Optimizers Namespace

TypeDescription
Adam<'T>
GradientDescent<'T>
RMSprop<'T>
ModuleDescription
Adam
GradientDescent
OptimizerTypes
RMSprop

SymTensor Namespace

TypeDescription
ExprInfoT
MultiChannelOpUsageT
UExprInfoT

Information about a unified expression.

VarRecord<'RVal, 'RExpr>

Maps a value record (containing scalars or ArrayNDTs) to a expression record (containing ExprTs).

ModuleDescription
BaseRangesSpec
CompileEnv

Function compilation parameters

ConstSpec

scalar constant value

ConstSpecTypes

scalar constant value types

Debug
Deriv

derivative calculation

DerivCheck
DerivTypes
DiagnosticsVisualizer
Dump
ElemExpr

element expression

ElemExprDeriv
ElemExprHostEval
ElemExprTypes
EnvTypes
EvalEnv
Expr

expression module

ExprTypes
Frac
Func

Generates F# function from expressions.

FuncTypes
Hold

functions for working with held op

HostEval
HostEvalTypes
Interpolator

linear interpolator functions

InterpolatorTypes

linear interpolator types

LoopEval

functions for loop evaluation

ModelContextTypes
Optimizer
RangeSpecTypes
ShapeSpec

shape specification of a tensor

ShapeSpecTypes
SimpleRangeSpec
SimpleRangesSpec
SizeMultinomTypes
SizeProduct
SizeProductTypes
SizeSpec
SizeSpecTypes
SizeSymbol
SizeSymbolTypes
SymSizeEnv
SymSizeEnvTypes
Trace
TypeName

assembly qualified name of a .NET type

TypeNameTypes

TypeName types

UElemExpr

unified element expression

UExpr

Functions for dealing with unified expressions.

UExprRngsSpec
UExprTypes
Utils
VarEnv

Variable value collection.

VarEnvTypes
VarSpec

variable specification

VarSpecTypes

variable specification types

SymTensor.Compiler Namespace

ModuleDescription
ArrayNDManikin
ArrayNDManikinTypes
ExecUnit
ExecUnitsTypes

SymTensor.Compiler.Cuda Namespace

TypeDescription
VarEnvReg

Locks and registers all variables in a VarEnv for use with CUDA.

ModuleDescription
ArgTemplates
Compile
CudaCmdTypes
CudaCompileEnv

methods for manipulating the CUDA compile environment

CudaElemExpr
CudaEval
CudaEvalTypes
CudaExecEnv
CudaExecUnit
CudaExecUnitTypes
CudaExprWorkspaceTypes
CudaRecipe
CudaRecipeTypes
CudaStreamSeq
Debug
Native

native methods

NativeFunctionDelegates
PassArrayByVal
TmplInstCache
Types

Tensor Namespace

TypeDescription
BaseTensorDevice
BlockTensor<'T>

block tensor specification

CannotBroadcast

cannot broadcast to same shape

CannotCudaRegisterMemory

cannot register host memory with CUDA, maybe because it is not properly aligned

CudaError

generic CUDA error

CudaRegMemHnd

CUDA registered memory for fast data transfer. Dispose to unregister memory with CUDA.

DataTypeMismatch

operation requires tensors of same data types, but specified tensor had different data types

HDF5

A HDF5 file.

HDF5Mode
ITensor

Type-neutral interface to Tensor<'T> of any type 'T.

ITensorBackend<'T>
ITensorCudaBackend

type-neutral interface to CUDA backend for tensors

ITensorCudaStorage

type neutral interface to a CudaStorageT

ITensorDevice
ITensorHostStorage

type-neutral interface to TensorHostStorage<'T>

ITensorStorage
ITensorStorage<'T>
ImpossibleWithoutCopy

the layout of this tensor makes this operation impossible without copying it

IndexOutOfRange

specified tensor index is out of range

InvalidTensorLayout

invalid tensor layout specification

InvalidTensorRng

invalid tensor range specification

MatrixPart

part of a matrix

NPZFile

A Numpy .npz data file.

OutOfCudaMemory

out of CUDA memory

PinnedMemory

pinned .NET managed memory (wraps a GCHandle)

SeqTooShort

sequence too short to fill tensor

ShapeMismatch

operation requires tensors of same shape, but specified tensor had different shapes

SingularMatrixError

singular matrix encountered

StorageMismatch

operation requires tensors of same storage, but specified tensors had different storages

StrideMismatch

operation requires tensor with a specific stride configuration, which is not fulfilled

Tensor<'T>

An N-dimensional array with elements of type 'T.

Tensor

An N-dimensional array with elements of type 'T.

TensorCudaBackend<'T>

CUDA backend for tensors.

TensorCudaDevice

Creates Tensors on a CUDA device.

TensorCudaStorage<'T>

Tensor storage on a CUDA device.

TensorHostBackend<'T>

Backend for host tensors.

TensorHostDevice

Factory for host tensors.

TensorHostStorage<'T>

Storage (using a .NET array) for host tensors.

TensorOrder

memory ordering of tensor

UnsupportedTransfer

transfer between used storages is not possible

ModuleDescription
CudaRegMem

Methods for locking a TensorHostStorage into memory and registering the memory with CUDA for fast data transfers with GPU device.

CudaTensor

Tensor stored on CUDA device.

Decomposition

Matrix decomposition functions.

HostTensor

Host tensor functions.

NPYFile

methods for accessing Numpy .npy data files.

Operators

Useful core operators.

RandomExtensions
Tensor

An N-dimensional array with elements of type 'T.

TensorLayout
TensorLayoutTypes
TensorRng

Range specification functions.

Tensor.Cuda.Backend Namespace

TypeDescription
Cfg

CUDA backend configuration

NativeIdxTensors

C++ NativeIdx

NativeIdxTensorsInfo

C++ NativeIdx template info

NativeTensor

C++ tensor marshaling

ModuleDescription
Cfg

CUDA backend configuration

Tensor.Utils Namespace

TypeDescription
DiskBinaryMap

a filesystem backed map for binary keys and values

ModuleDescription
Array2D
Cuda

Cuda support types functions

List
Map
Permutation

Permutation utilities

Seq
String
Util

Utility functions

UtilTypes

global Namespace

ModuleDescription
DiskMap
Fork me on GitHub